
How Integration helps on Cold-Start Recommendations
Cheng Guo

Tsinghua University
guoc15@mails.tsinghua.edu.cn

Hongyu Lu
Tsinghua University

luhy16@mails.tsinghua.edu.cn

Shaoyun Shi
Tsinghua University

shisy13@mails.tsinghua.edu.cn

Bin Hao
Tsinghua University

haob15@mails.tsinghua.edu.cn

Bin Liu
Tsinghua University

l-b15@tsinghua.edu.cn

Min Zhang
Tsinghua University
z-m@tsinghua.edu.cn

Yiqun Liu
Tsinghua University

yiqunliu@tsinghua.edu.cn

Shaoping Ma
Tsinghua University
msp@tsinghua.edu.cn

ABSTRACT
�e RecSys Challenge 2017 focuses on recommending proper or po-
tentially interested users for job postings. Di�erent from traditional
recommendation tasks, most of the items (jobs) to be recommended
are cold-items without interaction history. To address this prob-
lem, this paper introduces an e�ective integration method. �e
whole framework consists integrations in 4 di�erent levels: feature-
level, model-level, data-level and approach-level. First, we extract
features from users’ and jobs’ pro�les and make further abstrac-
tions. Second, we improve the model of Wide and Deep Learning,
a method that aggregates both embedding and numeric features.
Particularly, to receive be�er performance, both online and o�ine
user-item interactions are used to train the model. Other methods
such as content-based Linear Regression, Item-neighbor, Histori-
cal Enhancement and Xgboost are also taken into consideration.
Finally, we learn lessons from the �eld of social choice and exper-
iments show that results of aggregation by voting from di�erent
methods give a be�er performance, receiving 29732 in o�ine test
and 6903 in online test.

CCS CONCEPTS
•Information systems →Recommender systems;

1 INTRODUCTION
Certain recommender systems are designed to satisfy diverse

needs under di�erent circumstances. Although both the categories
or concepts are rapidly increasing, the main base of recommender
systems almost remain the same, which are Content-based rec-
ommendation and Collaborative Filtering based recommendation.
Methods of CF has received great success in accuracy and shows an
acceptable e�ectiveness in handling real-world conditions where
both users and items are updating each day. However, there are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys Challenge ’17, Como, Italy
© 2017 ACM. 978-1-4503-5391-5/17/08. . . $15.00
DOI: 10.1145/3124791.3124796

shortcomings which cannot be overcome in these kinds of methods.
It is widely realized that Collaborative Filtering is not able to deal
with cold-start problems, when “new” users or items are added into
the system without interaction histories. Another problem is their
defects in explaining why a list of certain items is recommended
to a user, for the reason that “latent factors” used by CF are not
that clear and convincing. On the contrary, Content-based methods
have natural advantages in se�ling such problems. Each user/item,
whether “old” or “new”, with his/her/its own pro�les/features, could
be directly added into a content-based model. Explanations are also
easier to be welcomed by telling a user the items recommended are
with “obvious” factors where he/she shows interests. Content-based
methods are more modeled as classi�cation problems. Beyond the
traditional KNN [6], LR [5] methods, classi�ers with more e�ec-
tiveness and higher accuracy like Xgboost [1] are made used of in
this �eld of studies. Besides, Deep Learning frameworks, like NCF
[4] and Wide and Deep [2, 7], are another excellent and premium
machine learning ideas, which become very popular in recent years
and widely used in recommendations.

�e ACM RecSys Challenge 2017 [3] focuses on the problem of
job recommendations on XING, given users’ (job roles, career level,
discipline, etc.) and items’ pro�les (industry, discipline, career level
demanded etc.) and user-item interactions (clicking, bookmarking,
replying, etc.). Compared to common recommendation tasks, most
of the items (jobs) are “cold”, which inspires us to think about the
problem in the way of content-based ideas. Tremendous researches
show that it is di�cult for individual methods to get considerable
performances and satisfy all the demands in certain scenarios. As
a result, it is natural to come up with ideas to integrate various
ideologies, le�ing each one show its special prowess. Based on this,
this paper introduces an integration model especially for cold-start
recommendation tasks. �e paper is composed as follows: Section 2
gives a brief introduction of features and further analyses on them.
In Section 3, we apply the structure of Wide and Deep Learning
and make adjustments for the real task. Section 4 shows the reason
of Data-level Integration and how the model is trained. Section
5 gives detailed instructions on how social choice can a�ect the
results of recommendation systems. Methods on how our results
are generated for online evaluation is talked about in Section 6. In
the �nal part, evaluations and conclusions are given based on the
whole work. Figure 1 gives an overview of our model.

Figure 1: �e conceptual diagram of the overall recommendation model.

2 FEATURE-LEVEL INTEGRATION
�e main goal of recommender systems is to predict the prefer-

ence of a certain user for a certain item. Accordingly, we extract
features of users, items and user-item pairs, hoping that integration
of these di�erent features may help improving the performance of
our algorithms.

2.1 User Features
To comprehensively capture users’ preferences, we try to use

di�erent levels of user information. Firstly, we assume that the
users’ interests are related to their a�ributes. �erefore, we extract
users’ a�ribute-level features directly from users’ pro�les, such
as user’s jobrole, career level and country, which contain coarse-
grained information of a user.

In addition, we also analyze users’ historical interactions to
understand users’ habits and preferences. Di�erent users have dif-
ferent interaction habits, such as the probability of a user clicking
on a new item, the ratio of a certain item a�ribute in ones history,
and the titles/tags of user-interacted items. Furthermore, by con-
sidering short and long term changes in user behaviors, we specify
the time windows of di�erent sizes, such as one or two weeks.

Users together with their preferences, could be modeled more
precisely by combining users’ a�ributive information and historical
interactions.

2.2 Item Features
Similarly, items have a�ributive information as well, such as

titles and industries. We directly extract these information as item
a�ributive features. Furthermore, to make full use of text informa-
tion of the items, we take advantage of a word embedding method
(Word2Vec) to extract the semantic information from item titles
and tags.

Although the challenge this year focuses mainly on cold-start
problem, there is still a small part of target items with historical
interactions. �erefore, this part of item-history features are ex-
tracted from their previous interactions.

2.3 Pair Features
Features of user-item pair are also extracted to describe the de-

gree of suitability between a certain user-item pair. Firstly, we �nd
that some a�ributes appear simultaneously in users and items, for
example, the country and career level. Based on these correspond-
ing a�ributes, we can measure the similarity between users and
items. For a�ributes that contain sequences, such as title and tags,
we calculate both the match numbers and Jaccard similarity. For
numerical a�ributes, such as career level, we use the di�erence
between them. And for category a�ributes, such as country, we
use a “match or not” indicator. Secondly, we believe that the simi-
larity between current item and a user’s historical interacted items
indicates ones interests in current item. For example, the frequency
of current item a�ributes in a user’s history re�ects the probability
of his/her being interest in this item.

To analyze e�ectiveness of features, we calculate the Pearson
correlations between each feature and the interaction label, serving
as reference in feature selections. Some of the e�ective features
and their Pearson correlations are shown in the following Table 1.

3 MODEL-LEVEL INTEGRATION
One of our model isWide&Deep, which is put forward by Google

recently [2]. It combines the deep neural networks and wide linear
models. �e motivation is to combine the bene�ts of two di�erent
kind of models, shown in Figure 2. Deep neural networks can
generate dense embeddings from sparse features and have a strong
ability to process unseen features. While sometimes they may
over-generalize. �erefore, combination with linear model can
help recommend more relevant items, which can memorize linear
relationship between input features and output results.

Logistic Regression serves as a bridge to implement the combi-
nation. To formalize the prediction, let Y denote the class label, x
denote the original features, then we have:

P(Y = 1|x) = σ (w>wide [x,ϕ(x)] +w
>
deepa

(lf) + b) (1)

where σ (·) is the sigmoid function, ϕ(x) is the cross product trans-
formation of the original features, and b is the bias. wwide is the

2

Table 1: Features of di�erent levels

Level Feature Name Pearson Correlation

User Features
A�ribute-level u career level 0.1449

u experience n entries class 0.0966

History-level u pos ratio 0.8435
u delete ratio 0.8341

Item Features
A�ribute-level i is payed 0.1630

i career level 0.0858

History-level i pos ratio 0.6383
i delete ratio 0.6468

Pair Features

A�ribute-level p career level gap 0.1093
p tags jobroles match num 0.0631

History-level
p tag neghistag match num 0.8123
p title neghistitle match num 0.7379
p country hisratio 0.5000

Figure 2: �e model of Wide and Deep model adjusted for
RecSys Challenge 2017 task.

vector of all wide model weights, and wdeep is the weights applied
on the �nal activations a(lf).

�e cross product transformations on the linear part is an expe-
rience guide added arti�cially. It represents features’ simultaneous
appearance. For example, we have a 2-dimension one-hot vector for
one’s gender, and a 2-dimension one-hot vector for one’s country
(if Germany or not). �en we can generate a 4-dimension one-hot
vector, which represents if one is a German man, woman or not.
We can de�ne the cross-product transformation as following:

ϕk (x) =
d∏
i=1

x
cki
i cki ∈ {0, 1} (2)

where ϕk represents the k-th transformation, cki is a boolean vari-
able denotes whether ϕk is related to the i-th feature xi .

�e interaction data is organized by each user-job pairs. Categor-
ical features are fed into an embedding layer and then concatenated

with other features as the input of hidden layers on deep neural
network. Cross-product of some categorical features are fed into
the wide linear part. In our experiments, real-value features are
input into both the deep neutral network and the wide linear part,
which is found to improve the �nal result.

A�er some trials, we set the classify label as whether a user
deleted the recommendation without any other positive interaction.
In the o�ine test, for every job, we submi�ed 100 users who are
supposed to have the smallest probability to delete the recommen-
dation.

4 DATA-LEVEL INTEGRATION
A new dataset is provided in the online evaluations, independent

of which is for the previous o�ine tests. Features could only be
extracted based on this new dataset since both users’ and items’ ids
are rehashed, leading to problems on how to update the model. One
of the simplest ways is to retrain the model, while it’s obviously
not wise because there remains much information within the old
dataset. For deep learningmodels, more training data usually means
be�er performances. Fortunately, Our model do not use ids as input
and it’s designed to learn the relationships between input features
and output labels. �is relationship are supposed to be maintained
across di�erent dataset. As a result, the model can be trained with
both online and o�ine data at same time. Another point is that,
combining the two datasets and retraining may consume long time
and much computing resource. �erefore, a model is designed to
load the original model for o�ine evaluation and continue training
process with the new data.

5 APPROACH-LEVEL INTEGRATION
5.1 Methodologies

5.1.1 Logistic Regression. In some sense, recommendation could
be considered as a classi�cation problem (usually 5-level in rating
predictions and 2-level in item-recommendations) given a certain
item and user. Logistic Regression is a classic regression model
commonly used to address such problems, where the output repre-
sents the probability that useru is interested in item i . �e equation
is as follow, where Score(i,u) is the prediction score on a item-user

3

卢泓宇

卢泓宇

Table 2: An example of Approval Voting

Voter Ballot A B C D
RS1 A C 1 0 1 0
RS2 A B C 1 1 1 0
RS3 A 1 0 0 0
Score 3 1 2 0

pair, fe is the feature extraction function and | | means a stitching
operation.

Score(i,u) = (1 + e−θ (fe (i) | |fe (u)))−1 (3)

5.1.2 Historical Enhancement. Considering both item a�ributes
and user histories, we found that an item may be clicked because
its a�ributes matched user’s preferences. Accordingly, we assumed
that a user’s preferences of an item can be re�ected in his/her
history. For example, a user, who clicked jobs mostly fromGermany,
is more likely to be interested in jobs whose country is Germany.
Given a user u, with its clicked items H (u), and an item i , with
its a�ributes set {a1i ,a

2
i . . . a

k
i }, we calculated the probability of u

clicks i by combining the probability of u clicked a item whose k-th
a�ribute is same as i .

Score(i,u) =
K∏
k=1

∑
i′∈H (u) I (aki′ = aki)

|H (u)| (4)

5.1.3 Item-neighbour. �e Item-neighbour idea comes from the
traditional Item-based KNNmethod, while here it’s not necessary to
set a hyper parameter K. Similarities between items are calculated
based on their metadata. We use tf-idf weightings modeling items
into vectors, and cosine distance to measure similarity between
item i and j , where sim(i, j) = ®i · ®j

| |®i | | | | ®j | |
.And the prediction score for

an i-u pair is:

Score(i,u) =
∑

e ∈E(u)
ω(e)sim(i(e), i) (5)

where E(u) is is the set of events for user u, and i(e) is the item of
event e . ω(e) is de�ned as same as the RecSys Challenge evaluation
metric: ω(clcik) = 1, ω(bookmark) = 5, ω(reply) = 5, ω(delete) =
−10, ω(recruiter ′s interest) = 20.

5.1.4 XGBoost. XGBoost is an e�ective open-source so�ware
library which provides the gradient boosting framework, also con-
sidered as a baseline method in this task. As an improvement of
the baseline, the regression targets are chosen as: -1 for delete only,
0 for impression, 1 for click only, 2 for recruiter interest, and 3 for
rely or bookmark. Such targets receive a best performance in our
experiments within the same framework. In the regression part, sev-
eral types of features are used including match features, similarity
features, and users’ history statistics. To further improve the result,
we tune a threshold of minimum score(0.35) on the validation set,
in order to �lter out low-score pairs.

5.2 Voting System
Social choice theory is a theoretical framework for analysis of

combining individual opinions, preferences, interests, or welfares
to reach a collective decision or social welfare in some sense. �e

Table 3: An example of Borda/Weighted Borda Voting

Voter Ballot Borda Weighted Borda
A B C D A B C D

RS1(ω1 = 0.3) C B D A 0 2 3 1 0 0.6 0.9 0.3
RS2(ω2 = 0.2) B D C A 0 3 1 2 0 0.6 0.2 0.4
RS3(ω3 = 0.5) B A D C 2 3 0 1 1 1.5 0 0.5
Score 2 8 4 4 1 2.7 1.1 1.2

main idea of social choice coincides with the purpose to aggregate
the results of di�erent approaches, in order to get a reasonable
and acceptable result on each aspect. Voting systems, or Electoral
systems, are main applications based on Social Choice theories.
We choose four e�ective and e�cient voting methods: Approval,
Copeland, Borda and Weighted Borda to implement the Integra-
tion of di�erent recommender systems. In this task, we consider
di�erent recommender systems as voters who give ballots (recom-
mendation results) on candidates (users to be recommended in this
task) individually, and get the �nal result through the proposed
voting system.

5.2.1 Approval. In traditional sense, Approval voting is a single-
winner electoral system. Each “voter” may “approve” of (select)
any number of candidates and the winner is the most-approved
“candidate”. �e idea could be easily promoted to “multi-winner”
elections. Suppose there are m recommender systems, each giving
top-n recommended users to item i as input. For example, for item
i, system RSk gives the user list Uk , candidates (users) in Uk are
approved while others are not. And the �nal result Uoutput is a
ranked list according to the approved number from the ballots.
Table 2 shows a simple case with 3 methods and 4 candidates each.
Approval Voting has a linear computation complexity of O(mn).
While its disadvantages are also obvious that it ignores the order
of candidates on each ballot, where user at position 1 and position
20 should be di�erent.

5.2.2 Copeland. Copeland’s method is a Condorcet method in
which candidates are ordered by the number of pairwise victories,
minus the number of pairwise defeats. As a method which gives
a �nal score of each candidate, it’s also easy to be promoted to
multi-winner elections. �e ballot of each voter is a ranked list
according to his/ her opinion, which is just consistent with this
task. Table 4 shows a simple case with 3 methods and 4 candidates.
It’s easy to conclude that the computation complexity of Copeland
Voting is O(mn2).

5.2.3 Borda. Borda or Borda Count is a single-winner election
method in which voters rank options or candidates in order of
preference. �e ballots in Borda is the same as Copeland. And
the voting method could also be promoted to multi-winner cases
because of its use of scores to describe a candidate’s importance,
as shown in Table 3. �e �nal score of each candidate (user) u in
recommended list given by RSj given item i could be measured as
follow, where RCN is the required candidate number:

Score(i,u) =
m∑
j

n∑
i
(RCN − RSjrank(i,u)) (6)

4

Table 4: An example of Copeland Voting

Voter Ballot (A, B) (A, C) (A, D) (B, C) (B, D) (C, D) Score
C B D A False False False False True True
B D C A False False False True True False
B A D C False True True True True False

Result (B, A) (C, A) (D, A) (B, C) (B, D) (D, C)
A -1 -1 -1 -3
B 1 1 1 3
C 1 -1 -1 -1
D 1 -1 1 1

5.2.4 Weighted-Borda. As mentioned before, Borda is a voting
method that concerns both order of each result given by recom-
mender systems and computation complexity. While problems
remain: whether di�erent recommendation methods are of a same
importance, or are they in the same level of reliability? To improve
traditional Borda, we learn lessons from Weighted Voting, where
voters are not the same but with di�erent weights. �e higher value
of a voter’s weight, the more he/she will in�uence the �nal results.
Accordingly, the �nal score of each candidate (user) u is as follow,
whereωj is a hyper-parameter to measure a recommender system’s
reliability:

Score(i,u) =
m∑
j

n∑
i
ωj (RCN − RSjrank(i,u)) (7)

�e weight ωj of each recommender system is di�cult to set or-
dinarily, but fortunately, they could be estimated by large-scale
o�ine experiments. Scores of the methods separately are used as
reference to give their weights where ωj =

of f l ine score(RSj)∑
k of f l ine score(RSk) ,

also shown in Table 3.

6 FROM OFFLINE TO ONLINE
Online recommendation task asks participants to submit users

that may be interested in the provided items every single day. On-
line test breaks the limit of the original recommender system of
XING, providing opportunities for users that may never perform
interactions, leading to a completely change in concepts. Except
for that, the main di�erence in demand from o�ine tests is that
each user is only permi�ed to be recommended no more than once,
and for each item the number is limited to 250. �e task could be
considered as an optimization problem, trying to recommend the
best items to proper users. In the step of Approach Integration, we
make use of voting in two ways: voting from users to “select” item
lists, and voting from items to “select” user lists. Algorithm 1 shows
the process of the selection from users for online test, where K is a
hyper-parameter.

7 EVALUATIONS
�e RecSys Challenge allows participators to submit results for

speci�ed items in both o�ine and online tests, which could be used
as evaluations for our models. For online scores, scores per item
are calculated according to the feedback interactions to make them
comparable, for the number of items published everyday di�ers.
Table 5 shows results on both o�ine and online tests. All the

for i in candidate items do
for u in iu votinд(i) do

if (u is recommended)or (Rank(ui votinд(u), i) > K)
then
continue;

else
recommended list(i).append(u);

end
if recommended list(i).size > 250 then

break ;
end

end
end

Algorithm 1: Process of the selection from users for online test.

parameters are set on validation set to make sure the model gives
the best performance.

�e line “Before Feature Integration” means that models are
trained on the original given features. From Table 5, all the meth-
ods receive an improvement in o�ine tests a�er Feature Integration.
Great promotions haven been received in methods of Historical
Enhancement, XGBoost, Logistic Regression and Neural Network,
while the change is slight in Item-neighbour. �e reason for this
phenomenon is that user-item interactions put much larger in�u-
ence rather than users’ and items’ pro�le features.

Neural Network shows a be�er performance than other simple
methods, further more , Wide and Deep model, by integrating both
deep learning and wide linear part, receives an even be�er score.

In Approach level Integrations, Item-neighbour, Historical En-
hancement, XGBoost and Wide & Deep serve as voters for an
expected be�er result. Conclusions could be drawn that each of the
voting method shows an acceptable performance (20000+ score),
especially superior than those low-score methods such as Item-
neighbour and XGBoost. �e results are consistent with the idea
of “fairness” in Social Choice �eory. However, Approval Voting
and common Borda Voting get lower scores than the most reliable
“voter” Wide and Deep, considering that not each “voter” is equal
on judging which user might be interested in a certain item. Situ-
ations are improved by emphasis on pair-wise relationships from
Copeland Voting. Finally, by giving each voter a weight according
to its previous score, Weighted Borda receives the best score among
all the methods.

5

Table 5: Experiment results of o�line/online evaluations

O�ine Score Online Score/ItemBefore Feature Integration A�er Feature Integration
Item-neighbour 12372 12438 1.0180
Historical Enhancement 13590 20450 0.9541
XGBoost 3781 14628 —-
Logistic Regression (Wide) 6093 24168 —-
Neural Network (Deep) 325 25539 —-

Model Integration Wide and Deep 903 26855 1.0210

Approach Integration

Approval —- 22737 —-
Copeland —- 27739 —-
Borda —- 25403 —-
Weighted Borda —- 28082 1.2177

Table 6: Experiment on Data Integration (3 ways to use of-
�ine data)

Model online-only �ne-tuning retrain
positive ratio 0.174 0.311 0.382

Due to the limitations of time and submission times per day,
only some of the methods with good performances are selected
and applied. For online evaluation, we report the best score from
each model during a single day rather than taking the average.
Since items provided every single day may be signi�cantly various.
�e sores are calculated from feedbacks given by the competition
system, using the same interaction metric. Approach Integration
still holds the best performance, followed by Wide & Deep and
Item-neighbour. �e relatively poor performance from Wide &
Deep could be explained by its over-��ing on training set. And for
Historical Enhancement, the reason lies in that there is not enough
interaction history to learn items’ and users’ a�ributes.

To validate whether Data Integration makes a di�erence, experi-
ments are conducted on “online-only” (model trained with online
data only), “retrained” (model retrained with combination of both
o�ine and online data) and “�ne-tuning” (o�ine data based model
trained by adding online data).In order to make comparisons, the
positive ratio of impressions on a certain day (18th May) is used as
an evaluation metric, and the results are shown in 6. It makes sense
that the “retained” model gets the best performance, and at the
same time, “�ne-tuning” model also achieves a similar performance
with an acceptable cost of time. Both these two models shows a
signi�cantly be�er performances than method of “online-only”.

8 CONCLUSIONS
�is paper introduces our strategy applied in RecSys Challenge

2017. Di�erent approaches are designed and used to address the
job recommendation task in a cold-start scenario. Our framework
is proposed as a four-level integration and the key-ideas are listed
in below:

Feature Integration of di�erent levels can signi�cantly a�ect the
performance of a recommender system.

Wide and Deep Learning is an e�ective model to aggregate
heterogeneous features. It also shows a superior performance com-
pared with other content-based methods.

�e situations in online tests share diversities with o�ine ones,
where a non-over-��ed model is necessarily required. By adding
new data into a already-trained model, balance is reached consider-
ing both time costs and performance.

Although di�erent RSs hold various performances, they could be
a good supplement of each other. Lessons are learned from Social
Choice �eory to implement the Approach-level Integration and
receive the best results.

Integration in these four levels do help a lot on cold-start rec-
ommendations.In our future study, a multi-level Deep and Wide
model would be tested. In addition, other voting approaches and
boosting methods will also be taken into consideration.

ACKNOWLEDGMENTS
We thank the organizers of RecSys Challenge 2017 and Xing

for generously providing the opportunity and data resources for
developing and testing our techniques and ideas. And special thanks
to Weizhi Ma, Xiao Lin and Chong Chen for their constructive
advice and discussions.

REFERENCES
[1] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 785–794.

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[3] Abel Fabian, Yashar Deldjoo, Mehdi Elahi, and Daniel Kohlsdorf. 2017. RecSys
Challenge 2017: O�ine and Online Evaluation. In Proceedings of the 11th ACM
Conference on Recommender Systems (RecSys ’17). ACM, Como, ITALY, 2.

[4] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative �ltering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Commi�ee, 173–182.

[5] Maja Pohar, Mateja Blas, and Sandra Turk. 2004. Comparison of logistic regres-
sion and linear discriminant analysis: a simulation study. Metodoloski zvezki 1, 1
(2004), 143.

[6] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative �ltering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285–295.

[7] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang.
2017. Situational Context for Ranking in Personal Search. In�e International
Conference. 1531–1540.

6

	Abstract
	1 Introduction
	2 Feature-level Integration
	2.1 User Features
	2.2 Item Features
	2.3 Pair Features

	3 Model-level Integration
	4 Data-level Integration
	5 Approach-level Integration
	5.1 Methodologies
	5.2 Voting System

	6 from offline to online
	7 evaluations
	8 conclusions
	Acknowledgments
	References

